Увеличить поглощение веществом рентгеновского излучения можно путем. Взаимодействие рентгеновского излучения с твердым телом (фотоэффект, эффект Комптона). Сечение фотоэффекта и его связь с линейным коэффициентом поглощения рентгеновского излучения. где к

1. Источники рентгеновского излучения.

2. Тормозное рентгеновское излучение.

3. Характеристическое рентгеновское излучение. Закон Мозли.

4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления.

5. Физические основы использования рентгеновского излучения в медицине.

6. Основные понятия и формулы.

7. Задачи.

Рентгеновское излучение - электромагнитные волны с длиной волны от 100 до 10 -3 нм. На шкале электромагнитных волн рентгеновское излучение занимает область между УФ-излучением и γ -излучением. Рентгеновское излучение (Х-лучи) открыты в 1895 г. К. Рентгеном, который в 1901 г. стал первым Нобелевским лауреатом по физике.

32.1. Источники рентгеновского излучения

Естественными источниками рентгеновского излучения являются некоторые радиоактивные изотопы (например, 55 Fe). Искусственными источниками мощного рентгеновского излучения являются рентгеновские трубки (рис. 32.1).

Рис. 32.1. Устройство рентгеновской трубки

Рентгеновская трубка представляет собой вакуумированную стеклянную колбу с двумя электродами: анодом А и катодом К, между которыми создается высокое напряжение U (1-500 кВ). Катод представляет собой спираль, нагреваемую электрическим током. Электроны, испущенные нагретым катодом (термоэлектронная эмиссия), разгоняются электрическим полем до больших скоростей (для этого и нужно высокое напряжение) и попадают на анод трубки. При взаимодействии этих электронов с веществом анода возникают два вида рентгеновского излучения: тормозное и характеристическое.

Рабочая поверхность анода расположена под некоторым углом к направлению электронного пучка, для того чтобы создать требуемое направление рентгеновских лучей.

В рентгеновское излучение превращается примерно 1 % кинетической энергии электронов. Остальная часть энергии выделяется в виде тепла. Поэтому рабочая поверхность анода выполняется из тугоплавкого материала.

32.2. Тормозное рентгеновское излучение

Электрон, движущийся в некоторой среде, теряет свою скорость. При этом возникает отрицательное ускорение. Согласно теории Максвелла, любое ускоренное движение заряженной частицы сопровождается электромагнитным излучением. Излучение, возникающее при торможении электрона в веществе анода, называют тормозным рентгеновским излучением.

Свойства тормозного излучения определяются следующими факторами.

1. Излучение испускается отдельными квантами, энергии которых связаны с частотой формулой (26.10)

где ν - частота, λ - длина волны.

2. Все электроны, достигающие анода, имеют одинаковую кинетическую энергию, равную работе электрического поля между анодом и катодом:

где е - заряд электрона, U - ускоряющее напряжение.

3. Кинетическая энергия электрона частично передается веществу и идет на его нагревание (Q), а частично расходуется на создание рентгеновского кванта:

4. Соотношение между Q и hv случайно.

В силу последнего свойства (4) кванты, порожденные различными электронами, имеют различные частоты и длины волн. Поэтому спектр тормозного рентгеновского излучения является сплошным. Типичный вид спектральной плотности потока рентгеновского излучения (Φ λ = άΦ/άλ) показан на рис. 32.2.

Рис. 32.2. Спектр тормозного рентгеновского излучения

Со стороны длинных волн спектр ограничен длиной волны 100 нм, которая является границей рентгеновского излучения. Со стороны коротких волн спектр ограничен длиной волны λ min . Согласно формуле (32.2) минимальной длине волны соответствует случай Q = 0 (кинетическая энергия электрона полностью переходит в энергию кванта):

Расчеты показывают, что поток (Φ) тормозного рентгеновского излучения прямо пропорционален квадрату напряжения U между

анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Спектры тормозного рентгеновского излучения при различных напряжениях, различных температурах катода и различных веществах анода показаны на рис. 32.3.

Рис. 32.3. Спектр тормозного рентгеновского излучения (Φ λ):

а - при различном напряжении U в трубке; б - при различной температуре T

катода; в - при различных веществах анода отличающихся параметром Z

При увеличении анодного напряжения значение λ min смещается в сторону коротких длин волн. Одновременно возрастает и высота спектральной кривой (рис. 32.3, а).

При увеличении температуры катода возрастает эмиссия электронов. Соответственно увеличивается и ток I в трубке. Высота спектральной кривой увеличивается, но спектральный состав излучения не изменяется (рис. 32.3, б).

При изменении материала анода высота спектральной кривой изменяется пропорционально атомному номеру Z (рис. 32.3, в).

32.3. Характеристическое рентгеновское излучение. Закон Мозли

При взаимодействии катодных электронов с атомами анода наряду с тормозным рентгеновским излучением возникает рентгеновское излучение, спектр которого состоит из отдельных линий. Это излучение

имеет следующее происхождение. Некоторые катодные электроны проникают в глубь атома и выбивают электроны с его внутренних оболочек. Образовавшиеся при этом вакантные места заполняются электронами с верхних оболочек, в результате чего высвечиваются кванты излучения. Это излучение содержит дискретный набор частот, определяемый материалом анода, и называется характеристическим излучением. Полный спектр рентгеновской трубки представляет собой наложение характеристического спектра на спектр тормозного излучения (рис. 32.4).

Рис. 32. 4. Спектр излучения рентгеновской трубки

Существование характеристических спектров рентгеновского излучения было обнаружено с помощью рентгеновских трубок. Позже было установлено, что такие спектры возникают при любой ионизации внутренних орбит химических элементов. Исследовав характеристические спектры различных химических элементов, Г. Мозли (1913 г.) установил следующий закон, носящий его имя.

Корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

где ν - частота спектральной линии, Z - атомный номер испускающего элемента, А, В - константы.

Закон Мозли позволяет определить атомный номер химического элемента по наблюдаемому спектру характеристического излучения. Это сыграло большую роль при размещении элементов в периодической системе.

32.4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления

Существуют два основных типа взаимодействия рентгеновского излучения с веществом: рассеяние и фотоэффект. При рассеянии направление движения фотона изменяется. При фотоэффекте фотон поглощается.

1. Когерентное (упругое) рассеяние происходит тогда, когда энергия рентгеновского фотона недостаточна для внутренней ионизации атома (выбивания электрона с одной из внутренних оболочек). При этом изменяется направление движения фотона, а его энергия и длина волны не изменяются (поэтому это рассеяние и называется упругим).

2. Некогерентное (комптоновское) рассеяние происходит тогда, когда энергия фотона намного больше энергии внутренней ионизации А и: hv >> А и.

При этом электрон отрывается от атома и приобретает некоторую кинетическую энергию Е к. Направление движения фотона при комптоновском рассеянии изменяется, а его энергия уменьшается:

Комптоновское рассеяние связано с ионизацией атомов вещества.

3. Фотоэффект имеет место тогда, когда энергия фотона hv достаточна для ионизации атома: hv > А и. При этом рентгеновский квант поглощается, а его энергия расходуется на ионизацию атома и сообщение кинетической энергии выбитому электрону Е к = hv - А И.

Комптоновское рассеяние и фотоэффект сопровождаются характеристическим рентгеновским излучением, так как после выбивания внутренних электронов происходит заполнение вакантных мест электронами внешних оболочек.

Рентгенолюминесценция. В некоторых веществах электроны и кванты комптоновского рассеяния, а также электроны фотоэффекта вызывают возбуждение молекул, которое сопровождается излучательными переходами в основное состояние. При этом возникает свечение, называемое рентгенолюминесценцией. Люминесценция платиносинеродистого бария позволила Рентгену открыть Х-лучи.

Закон ослабления

Рассеяние рентгеновских лучей и фотоэффект приводят к тому, что по мере проникновения рентгеновского излучения вглубь первичный пучок излучения ослабляется (рис. 32.5). Ослабление носит экспоненциальный характер:

Величина μ зависит от поглощающего материала и спектра излучения. Для практических расчетов в качестве характеристики ослабле-

Рис. 32.5. Ослабление рентгеновского потока в направлении падающих лучей

где λ - длина волны; Z - атомный номер элемента; k - некоторая константа.

32.5. Физические основы использования

рентгеновского излучения в медицине

В медицине рентгеновское излучение применяется в диагностических и терапевтических целях.

Рентгенодиагностика - методы получения изображений внутренних органов с использованием рентгеновских лучей.

Физической основой этих методов является закон ослабления рентгеновского излучения в веществе (32.10). Однородный по сечению поток рентгеновского излучения после прохождения неоднородной ткани станет неоднородным. Эта неоднородность может быть зафиксирована на фотопленке, флуоресцирующем экране или с помощью матричного фотоприемника. Например, массовые коэффициенты ослабления костной ткани - Са 3 (РО 4) 2 - и мягких тканей - в основном Н 2 О - различаются в 68 раз (μ m кости /μ m воды = 68). Плотность кости также выше плотности мягких тканей. Поэтому на рентгеновском снимке получается светлое изображение кости на более темном фоне мягких тканей.

Если исследуемый орган и окружающие его ткани имеют близкие коэффициенты ослабления, то применяют специальные контрастные вещества. Так, например, при рентгеноскопии желудка обследуемый принимает кашеобразную массу сульфата бария (ВаSО 4), у которого массовый коэффициент ослабления в 354 раза больше, чем у мягких тканей.

Для диагностики используют рентгеновское излучение с энергией фотонов 60-120 кэВ. В медицинской практике используют следующие методы рентгенодиагностики.

1. Рентгеноскопия. Изображение формируется на флуоресцирующем экране. Яркость изображения невелика, и его можно рассматривать только в затемненном помещении. Врач должен быть защищен от облучения.

Достоинством рентгеноскопии является то, что она проводится в реальном режиме времени. Недостаток - большая лучевая нагрузка на больного и врача (по сравнению с другими методами).

Современный вариант рентгеноскопии - рентгенотелевидение - использует усилители рентгеновского изображения. Усилитель воспринимает слабое свечение рентгеновского экрана, усиливает его и передает на экран телевизора. В результате резко уменьшилась лучевая нагрузка на врача, повысилась яркость изображения и появилась возможность видеозаписи результатов обследования.

2. Рентгенография. Изображение формируется на специальной пленке, чувствительной к рентгеновскому излучению. Снимки производятся в двух взаимно перпендикулярных проекциях (прямая и боковая). Изображение становится видимым после фотообработки. Готовый высушенный снимок рассматривают в проходящем свете.

При этом удовлетворительно видны детали, контрастности которых отличаются на 1-2 %.

В некоторых случаях перед обследованием пациенту вводится специальное контрастное вещество. Например, йодсодержащий раствор (внутривенно) при исследовании почек и мочевыводящих путей.

Достоинствами рентгенографии являются высокое разрешение, малое время облучения и практически полная безопасность для врача. К недостаткам относится статичность изображения (объект нельзя проследить в динамике).

3. Флюорография. При этом обследовании изображение, полученное на экране, фотографируется на чувствительную малоформатную пленку. Флюорография широко используется при массовом обследовании населения. Если на флюорограмме находят патологические изменения, то пациенту назначают более детальное обследование.

4. Электрорентгенография. Этот вид обследования отличается от обычной рентгенографии способом фиксации изображения. Вместо пленки используют селеновую пластину, которая электризуется под действием рентгеновских лучей. В результате возникает скрытое изображение из электрических зарядов, которое можно сделать видимым и перенести на бумагу.

5. Ангиография. Этот метод применяется при обследовании кровеносных сосудов. Через катетер в вену вводится контрастное вещество, после чего мощный рентгеновский аппарат выполняет серию снимков, следующих друг за другом через доли секунды. На рисунке 32.6 показана ангиограмма в районе сонной артерии.

6. Рентгеновская компьютерная томография. Этот вид рентгеновского обследования позволяет получить изображение плоского сечения тела толщиной несколько мм. При этом заданное сечение многократно просвечивается под разными углами с фиксацией каждого отдельного изображения в памяти компьютера. Затем

Рис. 32.6. Ангиограмма, на которой видно сужение в канале сонной артерии

Рис. 32.7. Сканирующая схема томографии (а); томограмма головы в сечении на уровне глаз (б).

осуществляется компьютерная реконструкция, результатом которой является изображение сканируемого слоя (рис. 32.7).

Компьютерная томография позволяет различать элементы с перепадом плотности между ними до 1 %. Обычная рентгенография позволяет уловить минимальную разницу по плотности между соседними участками в 10-20 %.

Рентгенотерапия - использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности особенно быстро размножающихся клеток. Очень жесткое рентгеновское излучение (с энергией фотонов примерно 10 МэВ) используется для разрушения раковых клеток, находящихся глубоко внутри тела. Для уменьшения повреждений здоровых окружающих тканей пучок вращается вокруг пациента таким образом, чтобы под его воздействием все время оставалась только поврежденная область.

32.6. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

32.7. Задачи

1. Почему в медицинских рентгеновских трубках пучок электронов ударяет в одну точку антикатода, а не падает на него широким пучком?

Ответ: чтобы получить точечный источник рентгеновских лучей, дающий на экране резкие очертания просвечиваемых предметов.

2. Найти границу тормозного рентгеновского излучения (частоту и длину волны) для напряжений U 1 = 2 кВ и U 2 = 20 кВ.

4. Для защиты от рентгеновского излучения используются свинцовые экраны. Линейный показатель поглощения рентгеновского излучения в свинце равен 52 см -1 . Какова должна быть толщина экранирующего слоя свинца, чтобы он уменьшил интенсивность рентгеновского излучения в 30 раз?

5. Найти поток излучения рентгеновской трубки при U = 50 кВ, I = 1мА. Анод изготовлен из вольфрама (Z = 74). Найти КПД трубки.

6. Для рентгенодиагностики мягких тканей применяют контрастные вещества. Например, желудок и кишечник заполняют массой сульфата бария (ВаSО 4). Сравнить массовые коэффициенты ослабления сульфата бария и мягких тканей (воды).

7. Что даст более густую тень на экране рентгеновской установки: алюминий (Z = 13, ρ = 2,7 г/см 3) или такой же слой меди (Z = 29, ρ = 8,9 г/см 3)?

8. Во сколько раз толщина слоя алюминия больше толщины слоя меди, если слои ослабляют рентгеновское излучение одинаково?

Рассеяние и поглощение рентгеновского излучения .

Рентгеновское излучение (Х–лучи , Рентген, 1895) возникает при бомбардировке быстрыми электронами металлической мишени анода (антикатод )(рис. 3.16). В технических рентгеновских трубках ускоряющее напряжение между катодом и анодом около 100 кВ. Из опытов Баркла (1905) по двойному рассеянию рентгеновского излучения следовало, что это излучение поперечно поляризовано. Опыты Брэгга, Лауэ, Фридриха, Книппинга, а также Дебая и Шерера по дифракции рентгеновского излучения в кристаллах показали, что рентгеновское излучение, так же как свет, имеет электромагнитное происхождение. Однако рентгеновское излучение характеризуется гораздо меньшими длинами волн. Рентгеновское излучение занимает спектральную область между гамма и ультрафиолетовым излучением в диапазоне длин волн от до см.

Рис.3.16 Источники рентгеновского излучения - рентгеновские трубки,

некоторые радиоактивные изотопы, ускорители заряженных частиц, лазеры рентгеновского диапазона, Солнце и другие космические объекты.

Два типа рентгеновского излучения: тормозное ихарактеристическое .

Тормозное излучение (рис. 3.17) возникает вследствие замедления электронов в мишени и не зависит от вещества мишени. Спектр тормозного излучения сплошной, потому что переменный ток, связанный с тормозящимся электроном, изменяется монотонно, а не периодически. С увеличением длины волны интенсивность тормозного излучения после максимума монотонно ослабевает. Со стороны коротких длин волн интенсивность резко обрывается коротковолновая граница (квантовый предел )тормозного излучения. По корпускулярным представлениям энергия кванта излучения будет максимальной, если вся энергия тормозящегося в мишени электрона eV тратится на излучение:

. (3.48)

Определение коротковолновой границы в эксперименте позволяет найти по формуле (3.48) очень точное значение комбинации постоянных hc/e .

С увеличением ускоряющего напряжения на фоне сплошного спектра, начиная с некоторого критического значения, возникают резкие максимумы. Их положение зависит от вещества мишени (рис. 3.17б). Эти максимумы связывают с характеристическим рентгеновским излучением. Оно имеет линейчатый, дискретный спектр. В этом оно аналогично оптическому излучению атомов. Характеристическое излучение также группируется в спектральные серии (рис.3.18). Их обозначение: Ксерия, Lсерия, Мсерия и т.д. (Баркла, 1911). Однако свойства характеристического излучения существенно отличаются от свойств оптического излучения:



I. Характеристическое излучение имеет небольшое число линий;

II. Отсутствует периодичность в рентгеновских спектрах при последовательном прохождении периодической системы. Наблюдается монотонное смещение в коротковолновую часть спектра;

III. Характеристическое излучение является чисто атомным свойством вещества. Оно не зависит от того, находится ли

Рис.3.18 вещество в чистом виде или в каком-либо химическом

соединении. Это позволяет проводить анализ состава сложных химических соединений;

IV. Отсутствует обращение спектральных линий. В оптическом диапазоне спектры испускания и спектры поглощения данного атома взаимно обращаемы. Они характеризуются одними и теми же длинами волн. При этом спектры поглощения получаются при пропускании сплошного света сквозь холодные пары атомов. Если пропускать сплошное рентгеновское излучение через вещество, то наблюдаются не линии характеристического излучения, а полосы поглощения.

Механизм возникновения характеристического излучения связан не с периферийными электронами атома, как в случае оптического излучения, а с его внутренними электронами. По интерпретации Косселя (1917) характеристическое излучение происходит в два этапа:

1) бомбардирующий мишень электрон выбивает из атома электрон с какой-то внутренней оболочки. В результате этого атом становится возбужденным, а в оболочке образуется «дырка»;

2) электроны атома с верхних уровней переходят на уровень с «дыркой». Избыток энергии при этом освобождается в виде рентгеновского излучения - возникают K, L, M, N серии (рис.3.19).

Отдельные линии каждой спектральной серии обозначаются в порядке уменьшения длины волны: . Ксерия самая коротковолновая: . Все линии имеют тонкую структуру. Линии Ксерии являются дублеты: .

С увеличением энергии электронов, сталкивающихся с

Рис.3.19 мишенью, появляются линии длинноволновых серий,

и в последнюю очередь возникают линии Ксерии. Наименьшее значение ускоряющей разности потенциалов, при котором в характеристическом спектре появляются линии некоторой серии - критический потенциал возбуждения этой серии для данного элемента. М серия имеет 5 критических потенциалов возбуждения, Lсерия 3, Ксерия 1 (рис. 3.19). Потенциал возбуждения Ксерии - потенциал ионизации атома. Если возбуждается Ксерия, то одновременно возникают все остальные серии данного элемента.

Рентгеновские спектры атомов дают возможность точного определения заряда ядра (порядкового номера элемента в периодической системе Менделеева). Это показал Мозли (1913): частота линий рентгеновского излучения определяется формулой бальмеровского типа. В частности, частота линии равна:

. (3.49)

Z – 1 эффективный заряд ядра, который экранирован одним из электронов Кслоя. Аналогичная приближенная формула получена для линии , при этом эффективный заряд ядра определяется как Z – a , где a – постоянная экранирования. Закон Мозли (рис.3.20):

постоянные.

При прохождении слоя вещества толщиной х интенсивность параллельного пучка рентгеновского излучения ослабляется по закону:

k – коэффициент ослабления . Ослабление излучения происходит по двум причинам: из-за рассеяния , в результате которого часть лучей изменяет свое первоначальное направление; из-за поглощения (абсорбции ) , в результате которого часть энергии излучения в конце концов переходит в тепло:

коэффициент истинного поглощения, коэффициент рассеяния рентгеновских лучей.

Часто пользуются массовыми коэффициентами:

, (3.50б)

– плотность вещества.

Используются также атомные коэффициенты:

, (3.50в)

масса атома, А – масса моля вещества, число Авогадро.

Рассеяние излучения вызывается неоднородностями cреды и флуктуациями ее плотности. В рентгеновском диапазоне неоднородности - атомы и электроны в атомах. В случае мягкого рентгеновского излучения , когда его длина волны достаточно велика и превосходит размеры атома, атом рассеивает как целое падающее излучение. Рассеяние когерентно - падающее и рассеянное излучения характеризуются одной и той же частотой (длиной волны). Это томсоновское рассеяние , сечение которого определяется классическим радиусом электрона.

В случае жесткого рентгеновского излучения (энергия более 10 кэВ)рассеяниестановится некогерентным (Комптон, 1923). Схема установки Комптона (рис.3.21). Источник рентгеновского излучения трубка Т с молибденовым антикатодом. С помощью диафрагм и фильтров выделялось излучение с длиной волны 0,71 (линия ), которое падало на

Рис.3.21 образец R (из графита). Анализ рассеянного излучения проводился

с помощью дифракционного спектрометра (кристалл К и фотопластинка Р ). Эксперименты Комптона показали, что наряду со смещенной линией рассеяния наблюдается несмещенная линия (рис.3.22). Ее возникновение связано с когерентным рассеянием излучения атомом как целого. При этом, чем более жестким является рентгеновское излучение, т.е. чем больше энергия рентгеновского кванта по сравнению с энергией связи электрона в атоме, тем более справедливо приближение свободного электрона, и тем меньше роль когерентного рассеяния рентгеновского излучения данным веществом. Однако Комптон–эффект играет преобладающую роль при энергии фотонов до 1 МэВ. При больших энергиях более существенным становится другой процесс - рождение пар. Это процесс превращения фотона в пару электрон–позитрон.

Спектр поглощения рентгеновского излучения составляют полосы. Этим он отличается от оптических спектров поглощения, которые состоят из отдельных линий. Поглощение рентгеновского излучения не зависит от оптических свойств вещества. Например, свинцовое стекло толщиной в несколько миллиметров прозрачно для света, но практически полностью поглощает рентгеновское излучение; алюминиевый листок совершенно не прозрачен для света, но не поглощает рентгеновские лучи. В пределах полосы поглощения коэффициент поглощения рентгеновских фотонов с энергией от до эВ монотонно убывает в соответствии с приближенной формулой (рис.3.23):

Рис.3.22 – эмпирическая постоянная. Резкие скачки - края полос поглощения. Они

соответствуют энергии, достаточной для выбивания электронов с М–, L–, K–слоев (критические потенциалы возбуждения М–, L–, K– серий). «Зазубренность» краев полосы: каждая серия, кроме К–серии, имеет несколько критических потенциалов. По значениям этих краев находят энергию связи электронов в слоях и оболочках атомов.

Поглощение рентгеновского излучения может сопровождаться как ионизацией атомов (и появлением фотоэлектронов), так и испусканием излучения более низкой частоты (флуоресценцией). Согласно (3.53) с увеличением энергии фотонов (уменьшением длины волны) поглощение рентгеновского излучения ослабевает. Поэтому коротковолновое излучение обладает большой проникающей способностью (жесткое излучение).Мягкое рентгеновское излучение очень сильно поглощается почти всеми веществами.

Сильная зависимость коэффициента поглощения от частоты

Рис.3.23 используется для изготовления фильтров, отсекающих мягкую

часть спектра. Поглощение рентгеновского излучения - чисто атомное свойство вещества: молекулярный коэффициент поглощения аддитивно складывается из атомных коэффициентов поглощения элементов, входящих в состав данного вещества.

В 1925 г. Оже изучал процесс возникновения электронов при поглощении жесткого рентгеновского излучения атомами криптона. Фотографируя треки возникающих фотоэлектронов в камере Вильсона, Оже обнаружил, что иногда из одной точки выходят следы двух, а не одного электрона. Это Оже–эффект. Механизм возникновения второго, Оже–электрона: Воздействие кванта жесткого рентгеновского излучения на атом приводит к выбросу из него электрона из К-слоя, в котором образуется «дырка». Атом становится ионизованным и сильно возбужденным. Освобождение его энергии в виде рентгеновского излучения не единственный механизм. Энергия возбуждения атома столь высока, что возможен вылет из него второго электрона с L–слоя, причем без излучения кванта . Энергия Оже–электрона еV определяется законом сохранения энергии:

, (3.54)

– энергия фотона, который мог бы излучиться, –энергия ионизации L–электрона. В атоме происходит внутреннее перераспределение энергии, называемое внутренней конверсией, приводящее к выбросу из него Оже–электрона. Атом становится двукратно ионизованным. Оже–эффект рассматривается как проявление общего процесса автоионизации возбужденного атома, который происходит в результате внутренней конверсии. Особенно сильно этот эффект проявляется в случае запрещенных электромагнитных переходов, например, в 0–0 переходах.

Рентгеновское излучение широко используется в самых различных областях науки и техники: в исследованиях электронной структуры атомов, молекул и твердых тел, в медицине, минералогии, материаловедении и т.п. Разработаны разнообразные методы исследований: рентгеновская микроскопия, рентгеновская спектроскопия, рентгеновская топография, созданы многочисленные приборы, в том числе для исследований космических объектов (рентгеновский телескоп), а для исследования биологических объектов - безлинзовый жесткий рентгеновский микроскоп.

.Лекция 22. Эффект Зеемана. Эффект Пашена–Бака.

Страница 1

Лекция 10

Взаимодействие рентгеновского излучения с твердым телом (фотоэффект, эффект Комптона). Сечение фотоэффекта и его связь с линейным коэффициентом поглощения рентгеновского излучения. Расчет массового коэффициента поглощения для полиатомных образцов.

Полезное соотношение при переходе от энергии фотона к длине волны

Произведение энергии на длину волны = hc = 12,4 кэВÅ

(10.1)
При прохождении пучка фотонов через твердое тело возможны следующие процессы, приводящие к ослаблению интенсивности пучка:


  • рождение фотоэлектронов в результате фотоэффекта;

  • комптоновское рассеяние;

  • образование электрон-позитронных пар.
Последний из этих процессов, заключающийся в поглощении фотона с образованием электрон-позитронной пары, может происходить только в случае если энергия фотона  2m e c 2 = 1,02 МэВ. В методах элементного и структурного анализа фотоны с такими энергиями не используются, поэтому данный процесс рассматриваться не будет.

Комптоновское рассеяние приводит в принципе не к поглощению фотона, а к изменению направления его движения (рассеянию на угол ) с одновременным увеличением его длины волны на величину  = (h /m e c )(1 – cos), где h /m e c = 0,0243 Å – комптоновская длина волны электрона . Энергии фотонов, используемых в методах анализа, обычно не превышают 10 кэВ, что соответствует длине волны  = 1,24 Å. Поэтому, даже для максимального угла рассеяния  = 90 о относительное изменение длины волны в результате комптоновского рассеяния /  210 -2 . Кроме того, при указанных энергиях, вероятность процесса комптоновского рассеяния значительно ниже вероятности рождения фотоэлектрона. Таким образом, преобладающий вклад в ослабление пучка фотонов (рентгеновских квантов) вносит фотоэффект.

Напомним, что при фотоэффекте рентгеновский квант с энергией ħ  передает всю энергию атомному электрону, в результате чего последний вылетает из атома с энергией

Е е = ħ  – Е св,

(10.2)
где Е св – энергия связи электрона в атоме.

Для осуществления фотоэффекта необходимо условие ħ   Е св, поэтому при фиксированной энергии кванта фотоэффект может иметь место на одних оболочках (подоболочках) и отсутствовать на других.

В соответствие с выражением (10.2), при облучении образца рентгеновскими квантами фиксированной энергии (монохроматическим рентгеновским излучением) из образца будут вылетать фотоэлектроны с различными энергиями, отвечающие различным энергиям связи. Измерив Е е и зная ħ , можно определить Е св и установить, каким атомом испущен фотоэлектрон. Эта возможность лежит в основе метода анализа, называемого рентгеновской фотоэлектронной спектроскопией.

Квантовомеханический расчет дает следующее выражение для зависимости сечения фотоэффекта на оболочке (подоболочке) с энергией связи Е св

Так как e 2 ħ /m e c = 5,5610 -2 кэВÅ 2 , то, объединив все константы, получим следующее выражение



Å 2 , если ħ  в кэВ.

(10.3)
Если ввести ħ  0 = hc / 0 = Е св, то получим зависимость сечения фотоэффекта от длины волны рентгеновского излучения в виде

0 называется длиной волны края поглощения (если К -оболочка, то К -край поглощения, если L 1 , то L 1 -край поглощения).

И
з приведенных выражений следует, что при ħ   Е св (   0) сечение фотоэффекта стремится к бесконечности. В действительности, наблюдается резкий рост величины  ph до некоторой величины, после чего сечение фотоэффекта на данной оболочке (подоболочке) становится равным нулю (ħ   Е св). При этом, естественно, сечение фотоэффекта на оболочке с меньшей энергией связи не равно нулю. На рис. 10.1а приведена зависимость сечения фотоэффекта от энергии квантов, а на рис. 10.1б – от длины волны вблизи края поглощения.

Полное сечение фотоэффекта в атоме  ph складывается из сечений фотоэффекта на каждой из s оболочек/подоболочек , которые зависят от ћ  и Е св данной оболочки/подоболочки.

Если сечение фотоэффекта рентгеновского кванта с энергией ћ  на оболочке/подоболочке в моноатомном образце с атомной концентрацией n 0 равно , тогда средняя длина свободного пробега кванта до его поглощения с выходом фотоэлектрона с s оболочки/подоболочки

, (10.5)

где n s – число электронов на s оболочке/подоболочке.

Пусть внутри образца интенсивность потока рентгеновских квантов равна I перед входом в слой толщиной dx , тогда доля поглощенного пучка за счет фотоэффекта в этом слое есть

,

где  s = n 0 n s .

Из этого дифференциального уравнения следует, что интенсивность потока рентгеновских квантов после прохождения образца толщиной l связана с интенсивность потока на входе в образец I 0 следующим соотношением:


,



где
коэффициент линейного поглощения . Единица измерения  – см -1 .

Иногда используется понятие длина ослабления – расстояние вдоль нормали к поверхности образца, на котором интенсивность рентгеновского излучения спадает в е раз. Длина ослабления обычно измеряется в мкм.

Существующие в настоящее время модели расчета , особенно при энергии кванта ћ  близкой к Е св, недостаточно хорошо согласуются с экспериментальными данными, поэтому на практике предпочитают пользоваться экспериментально определенными значениями коэффициента линейного поглощения рентгеновских квантов различных энергий в моноатомных материалах, которые определяются по изменению интенсивности потока рентгеновских квантов после прохождения образца известной толщины.

В справочниках обычно приводятся значения массового коэффициента поглощения / , где  – плотность поглотителя, единица измерения / – см 2 /г. Использование массового коэффициента поглощения обусловлено во-первых тем, что для определения линейного коэффициента поглощения необходимо измерять с большой точностью толщину тонкого (порядка микрона) поглотителя, для определения же массового коэффициента поглощения достаточно взвесить образец и определить площадь, облучаемую рентгеновским излучением на поглотителе, что можно сделать с существенно большей точностью. При известной плотности поглотителя  очевидно, что  = (/).

Во-вторых, использование массового коэффициента поглощения позволяет рассчитать / для соединения, состоящего из различных элементов по известным значениям (/) i каждого из элементов, входящего в состав соединения. Делается это следующим образом.

Пусть
– полное сечение (по всем оболочкам и подоболочкам) фотоэффекта на атоме i -го компонента соединения. Тогда линейный коэффициент поглощения в соединении может быть записан как

,

где n i и M i – атомная концентрация и атомная масса i -го компонента в соединении, n 0 i – атомная концентрация моноэлементного образца, состоящего только из i -го компонента, m 0 – атомная единица массы (1,6610 -24 г). Произведение в круглых скобках равно линейному коэффициенту поглощения i - го компонента; произведение, стоящее в знаменателе, представляет собой плотность i -го компонента, поэтому линейный коэффициент поглощения может быть представлен в виде

.

Плотность соединения можно представить в виде
и массовый коэффициент поглощения записать как

,

где  – атомная плотность соединения.

Если стехиометрический состав соединения известен, то известны и относительные концентрации каждого i -го компонента С i . Так как С i = n i /n , то окончательно, массовый коэффициент поглощения соединения имеет вид:


.



Иногда массовый коэффициент поглощения записывают через весовые доли Р i i -го компонента соединения (
).

На рис. 10.2 в качестве примера приведена зависимость массового коэффициента поглощения в никеле от длины волны рентгеновского излучения. Сильная зависимость / следует из энергетической зависимости сечения фотоэффекта от энергии рентгеновского кванта (длины волны). При длине волны меньше К –края поглощения, определяемой как h с /(соответственно при ћ  > ), кванты в основном поглощаются на К оболочке (
). При длине волны большей К –края поглощения этот процесс происходит на L - подоболочках, где для массового коэффициента поглощения также наблюдаются соответственно края L 1 , L 2 и L 3 – поглощения.

страница 1

Рентгеновские спектры бывают двух видов: сплошные и линейчатые. Сплошные спектры возникают при торможении быстрых электронов в веществе антикатода и являются обычным тормозным излучением электронов. Строение сплошного спектра не зависит от материала антикатода. Линейчатый спектр состоит из отдельных линий излучения. Он зависит от материала антикатода и полностью характеризуется им. Каждый элемент обладает своим, характерным для него линейчатым спектром. Поэтому линейчатые рентгеновские спектры называют также характеристическими.

Схему возникновения характеристического рентгеновского излучения можно изобразить следующим образом.

Между рентгеновскими линейными спектрами и оптическими линейчатыми спектрами существует три коренных различия. Во-первых, частота рентгеновского излучения в тысячи раз больше, чем частота оптического излучения. Это означает, что энергия рентгеновского кванта в тысячи раз больше оптического кванта. Во-вторых, рентгеновские спектры различных элементов имеют одинаковую структуру, в то время как структура оптических спектров различных элементов существенно различается. В-третьих, оптические спектры поглощения состоят из отдельных линий, совпадающих с линиями излучения главной серии соответствующего элемента. Рентгеновские спектры поглощения не похожи на рентгеновские спектры испускания: они состоят из нескольких полос с резким длинноволновым краем.


Все эти особенности рентгеновских спектров объясняются механизмом испускания, который находится в полном согласии со строением электронных оболочек. Электрон, падающий на материал антикатода, сталкиваясь с атомами антикатода, может выбить электрон с одной из внутренних оболочек атома. В результате этого получается атом, у которого отсутствует электрон на одной из внутренних оболочек. Следовательно, электроны более внешних оболочек могут переходить на освободившееся место. В результате этого испускается квант, который и является квантом рентгеновского излучения.

электронами и возмущения со стороны других электронов. При переходе электрона на освободившееся место на внутренней оболочке с внешней оболочки излучается квант, частота которого

Поскольку Z для тяжелых атомов велико, энергия термов также велика по сравнению с энергией оптических термов. Следовательно, и частоты излучения велики по сравнению с оптическими частотами. Этим объясняется большая энергия рентгеновских квантов.

Поскольку внутренние оболочки атомов имеют одинаковое строение, все тяжелые атомы должны иметь одинаково построенные рентгеновские спектры, лишь у более тяжелых атомов спектр смещается в сторону больших частот.

Это полностью подтверждается экспериментом и доказывает, что внутренние оболочки атомов имеют одинаковое строение, как это и предполагалось при объяснении периодической системы элементов.

В 1913 г. Английский физик Мозли установил закон, связывающий длины волн линий рентгеновского спектра с атомным номером элемента Z. Согласно этому закону:

Здесь R– постоянная Ридберга (R=1,1×10 7 1/м), n– номер энергетического уровня, на который перешел электрон, k– номер энергетического уровня, с которого перешел электрон.

Постоянная sназывается постоянной экранирования. Электроны, совершающие переходы при испускании рентгеновского излучения, находятся под воздействием ядра, притяжение которого несколько ослаблено действием остальных окружающих его электронов. Это экранирующее действие и находит свое выражение в необходимости вычесть из z некоторую величину.

Закон Мозли позволяет определить заряд ядра, зная длину волны линий, характеристического рентгеновского излучения. Именно исследования характеристического рентгеновского излучения позволили расставить окончательно элементы в таблице Менделеева.

Закон Мозли показывает, что корни квадратные из рентгеновских термов зависят линейно от зарядового числа Z элементов.

Если электрон выбит из К-оболочки (n =1), то при переходе на освободившееся место электронов с других оболочек излучается рентгеновская К-серия. При переходе электронов на освободившееся место в L-оболочке (n =2) излучается L-серия и т.д. Таким образом, экспериментально наблюдаемая одинаковость структуры рентгеновских спектров и закон Мозли подтверждают представления, употребляемые при интерпретации периодической системы элементов.

Особенность рентгеновских спектров поглощения также объясняется фактом связи испускания рентгеновского излучения с внутренними оболочками атома. В результате поглощения рентгеновского кванта атомом может произойти вырывание электрона с одной из внутренних оболочек атома, т.е. процесс фотоионизации. Каждая из полос поглощения соответствует вырыванию электрона из соответствующей оболочки атома. Полоса К (рис.9.6.) образуется в результате выбивания электрона из самой внутренней оболочки атома – К-оболочки, полоса L – из второй оболочки и т.д. Резкий длинноволновой край каждой полосы соответствует началу процесса фотоионизации, т.е. вырыванию электрона из соответствующей оболочки без сообщения ему дополнительной кинетической энергии. Длинноволновая часть полосы поглощения соответствует актам фотоионизации с сообщением электрону избыточной кинетической энергии. Структуры рентгеновских спектров поглощения тяжелых элементов аналогичны друг другу и подтверждают одинаковость строения внутренних оболочек атомов тяжелых элементов. На рис.9.7. видно, что каждая из полос поглощения имеет тонкую структуру: в К-полосе есть один максимум, в L-полосе – три максимума, в М-полосе – пять максимумов. Это объясняется тонкой структурой рентгеновских термов.

Если электрон наталкивается на относительно тяжелое ядро, то он тормозится, а его кинетическая энергия выделяется в виде рентгеновского фотона примерно той же энергии. Если же он пролетит мимо ядра, то потеряет лишь часть своей энергии, а остальную будет передавать попадающимся на его пути другим атомам. Каждый акт потери энергии ведет к излучению фотона с какой-то энергией. Возникает непрерывный рентгеновский спектр, верхняя граница которого соответствует энергии самого быстрого электрона. Таков механизм образования непрерывного спектра, а максимальная энергия (или минимальная длина волны), фиксирующая границу непрерывного спектра, пропорциональна ускоряющему напряжению, которым определяется скорость налетающих электронов. Спектральные линии характеризуют материал бомбардируемой мишени, а непрерывный спектр определяется энергией электронного пучка и практически не зависит от материала мишени.

Рентгеновское излучение можно получать не только электронной бомбардировкой, но и облучением мишени рентгеновским же излучением от другого источника. В этом случае, однако, большая часть энергии падающего пучка переходит в характеристический рентгеновский спектр и очень малая ее доля приходится на непрерывный. Очевидно, что пучок падающего рентгеновского излучения должен содержать фотоны, энергия которых достаточна для возбуждения характеристических линий бомбардируемого элемента. Высокий процент энергии, приходящейся на характеристический спектр, делает такой способ возбуждения рентгеновского излучения удобным для научных исследований.

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем, источником электронов является вольфрамовый катод, нагреваемый до высокой температуры. Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку большая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74.

Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

Принципы дифракции рентгеновского излучения. Чтобы понять явление дифракции рентгеновского излучения, нужно рассмотреть по порядку: во-первых, спектр рентгеновского излучения, во-вторых, природу кристаллической структуры и, в-третьих, само явление дифракции.

Как уже говорилось выше, характеристическое рентгеновское излучение состоит из серий спектральных линий высокой степени монохроматичности, определяемых материалом анода. С помощью фильтров можно выделить наиболее интенсивные из них. Поэтому, выбрав соответствующим образом материал анода, можно получить источник почти монохроматического излучения с очень точно определенным значением длины волны. Длины волн характеристического излучения обычно лежат в диапазоне от 2,285 для хрома до 0,558 для серебра (значения для различных элементов известны с точностью до шести значащих цифр). Характеристический спектр накладывается на непрерывный «белый» спектр значительно меньшей интенсивности, обусловленный торможением в аноде падающих электронов. Таким образом, от каждого анода можно получить два типа излучения: характеристическое и тормозное, каждое из которых играет по-своему важную роль.

Атомы в кристаллической структуре располагаются с правильной периодичностью, образуя последовательность одинаковых ячеек – пространственную решетку. Некоторые решетки (например, для большинства обычных металлов) довольно просты, а другие (например, для молекул белков) весьма сложны.

Для кристаллической структуры характерно следующее: если от некоторой заданной точки одной ячейки сместиться к соответствующей точке соседней ячейки, то обнаружится точно такое же атомное окружение. И если некоторый атом расположен в той или иной точке одной ячейки, то в эквивалентной ей точке любой соседней ячейки будет находиться такой же атом. Этот принцип строго справедлив для совершенного, идеально упорядоченного кристалла. Однако многие кристаллы (например, металлические твердые растворы) являются в той или иной степени неупорядоченными, т.е. кристаллографически эквивалентные места могут быть заняты разными атомами. В этих случаях определяется не положение каждого атома, а лишь положение атома, «статистически усредненного» по большому количеству частиц (или ячеек).

Дифракция рентгеновского излучения – это коллективное явление рассеяния, при котором роль отверстий и центров рассеяния играют периодически расположенные атомы кристаллической структуры. Взаимное усиление их изображений при определенных углах дает дифракционную картину, аналогичную той, которая возникла бы при дифракции света на трехмерной дифракционной решетке.

Рассеяние происходит благодаря взаимодействию падающего рентгеновского излучения с электронами в кристалле. Вследствие того, что длина волны рентгеновского излучения того же порядка, что и размеры атома, длина волны рассеянного рентгеновского излучения та же, что и падающего. Этот процесс является результатом вынужденных колебаний электронов под действием падающего рентгеновского излучения.

Рассмотрим теперь атом с облаком связанных электронов (окружающих ядро), на который падает рентгеновское излучение. Электроны во всех направлениях одновременно рассеивают падающее и испускают собственное рентгеновское излучение той же длины волны, хотя и разной интенсивности. Интенсивность рассеянного излучения связана с атомным номером элемента, т.к. атомный номер равен числу орбитальных электронов, которые могут участвовать в рассеянии. (Эта зависимость интенсивности от атомного номера рассеивающего элемента и от направления, в котором измеряется интенсивность, характеризуется атомным фактором рассеяния, который играет чрезвычайно важную роль в анализе структуры кристаллов.)

Выберем в кристаллической структуре линейную цепочку атомов, расположенных на одинаковом расстоянии друг от друга, и рассмотрим их дифракционную картину. Уже отмечалось, что рентгеновский спектр складывается из непрерывной части («континуума») и набора более интенсивных линий, характеристических для того элемента, который является материалом анода. Допустим, мы отфильтровали непрерывный спектр и получили почти монохроматический пучок рентгеновского излучения, направленный на нашу линейную цепочку атомов. Условие усиления (усиливающей интерференции) выполняется, если разность хода волн, рассеянных соседними атомами, кратна длины волны. Если пучок падает под углом a 0 к линии атомов, разделенных интервалами a (период), то для угла дифракции a разность хода, соответствующая усилению, запишется в виде

a (cos a – cosa 0) = hl ,

где l – длина волны, а h – целое число.

Чтобы распространить этот подход на трехмерный кристалл, необходимо лишь выбрать ряды атомов по двум другим направлениям в кристалле и решить совместно полученные таким образом три уравнения для трех кристаллических осей с периодами a , b и c . Два других уравнения имеют вид

Это – три фундаментальных уравнения Лауэ для дифракции рентгеновского излучения, причем числа h , k и c – индексы Миллера для плоскости дифракции. Рассматривая любое из уравнений Лауэ, например первое, можно заметить, что, поскольку a , a 0, l – константы, а h = 0, 1, 2, ..., его решение можно представить в виде набора конусов с общей осью a (рис. 5). То же самое верно для направлений b и c .

В общем случае трехмерного рассеяния (дифракция) три уравнения Лауэ должны иметь общее решение, т.е. три дифракционных конуса, расположенных на каждой из осей, должны пересекаться; общая линия пересечения показана на рис. 6. Совместное решение уравнений приводит к закону Брэгга – Вульфа:

l = 2(d /n )sinq ,

где d – расстояние между плоскостями с индексами h , k и c (период), n = 1, 2, ... – целые числа (порядок дифракции), а q – угол, образуемый падающим пучком (а также и дифрагирующим) с плоскостью кристалла, в которой происходит дифракция.

Анализируя уравнение закона Брэгга – Вульфа для монокристалла, расположенного на пути монохроматического пучка рентгеновского излучения, можно заключить, что дифракцию непросто наблюдать, т.к. величины l и q фиксированы, а sinq < 1. При таких условиях, чтобы имела место дифракция для рентгеновского излучения с длиной волны l , плоскость кристалла с периодом d должна быть повернута на правильный угол q . Для того чтобы реализовать это маловероятное событие, применяются различные методики.

Линейчатый (характеристический) рентгеновский спектр

Первое систематическое исследование линейчатых спектров элементов провел Г. Мозли в 1913 г. Он использовал спектрометр Брэгга вакуумного типа. Из каждого исследуемого элемента приготавливалась мишень рентгеновской трубки. Мозли обнаружил, что все исследуемые элементы дают спектры сходного вида (отсюда и часто используемое название спектров - характеристические спектры). Он разделил рентгеновские спектральные линии каждого элемента на две группы, или серии: на группу со сравнительно короткими длинами волн, /Г-серию, и на группу со сравнительно большими длинами волн, L-серию. Серии отделены одна от другой большим интервалом длин волн. Более тяжелые элементы с атомными номерами больше 66 дают также и другие рентгеновские спектральные серии, обозначаемые как М-, N-, 0-серии, с длинами волн, еще большими, чем у L-серии.

Поглощение рентгеновского излучения

Интенсивность рентгеновского излучения при прохождении через образец ослабляется за счет поглощения и рассеяния. Механизм поглощения рентгеновских лучей отличается от механизма оптического поглощения: поглощение энергии рентгеновского излучения происходит в результате единственного процесса - вырывания электронов внутренних оболочек за пределы атома, т. е. в результате ионизации атома за счет внутренних электронов. Энергия поглощаемого излучения превращается в кинетическую энергию выбитых электронов (фотоэлектронов) и потенциальную энергию возбужденного атома, которая равна энергии связи выбитого электрона.

На рисунке 16 представлен качественный вид спектра поглощения рентгеновского излучения. Рентгеновское излучение наименьшей энергии (наибольшей длины волны) вырывает электроны с внешних оболочек. При возрастании энергии излучения всё меньшая ее часть необходима для выбивания электрона из данной

оболочки. Это сопровождается уменьшением поглощения. Монотонное уменьшение поглощения происходит до тех пор, пока энергия излучения не станет достаточной для того, чтобы вырвать электрон из следующей, более глубокой оболочки. Это вызывает резкое увеличение поглощения, соответствующее краю поглощения. Краем поглощения называется резкий скачок поглощения электромагнитного излучения, вызванный тем, что энергии квантов рентгеновского излучения становится достаточно для перевода электрона в возбужденное состояние. На рисунке 16 показаны скачки поглощения, вызванные выбиванием электронов из оболочек и подоболочек L и М и оболочки К.

Другое явление, вызывающее ослабление интенсивности рентгеновского излучения при прохождении через вещество, - рассеяние. Рассеяние происходит в результате столкновения рентгеновского фотона (энергия фотона - hu) с электронами атома (с энергией Е эл).

Если энергия рентгеновских фотонов меньше энергии связи электронов (hu то фотоны не могут выбить электрон из данной внутренней оболочки. В результате упругого столкновения с закрепленными электронами фотоны лишь изменяют направление (рассеиваются); их энергия и соответственно длина волны остаются прежними. Рассеяние, при котором длина волны не изменяется, называется когерентным (томеоновским) раесеянием. Оно составляет основу рентгеновской дифракции, используемой в структурном анализе.

Если же энергия рентгеновских фотонов больше энергии связи электронов (hu > Е эл), то фотоны вырывают электрон из соответствующей внутренней оболочки, но при столкновении с электронами передают им часть своей энергии. В результате рассеивающиеся фотоны обладают меньшей энергией и большей длиной волны. Это рассеяние с изменением длины волны называется некогерентным (комптоновским) раеееянием. Поскольку выбивание электрона является первым условием возникновения всех рентгеновских и электронных спектров, именно некогерентиое рассеяние сопровождает их возникновение. Но так как в атоме имеются одновременно более и менее сильно связанные электроны (более глубокие и менее глубокие внутренние оболочки), то в спектре рассеянного излучения можно наблюдать две линии - с неизмененной и с измененной (увеличенной) длиной волны.

Интенсивность рассеяния увеличивается с атомным номером: чем больше в атоме электронов, тем большую интенсивность рассеяния они вызывают, т. е. рентгеновские лучи слабо рассеиваются легкими атомами и сильно - тяжелыми.

Количественная оценка уменьшения интенсивности рентгеновских лучей при прохождении через вещество производится с помощью коэффициента ослабления д, представляющего собой сумму коэффициента чистого (фотоэлектрического) поглощения т и коэффициента рассеяния а. Часто коэффициент ослабления называют коэффициентом поглощения, имея в виду его двухчленное содержание. При длинах волн более 0,5 А и для элементов с Z > 26 ослабление практически полностью обусловливается поглощением

Линейный коэффициент ослабления (поглощения) /ц, измеряемый в см -1 , может быть определен из закона Вера:

устанавливающего экспоненциальную зависимость уменьшения интенсивности любого излучения от толщины образца. Линейный коэффициент поглощения вычисляется логарифмированием (29):

Линейный коэффициент ослабления (30) используется для оценки прозрачности или непрозрачности образца при данной толщине образца и для данного излучения. Поскольку коэффициент д/ зависит от состояния вещества (твердого, жидкого, газообразного), он не является константой, характеризующей поглощение данного элемента. Его величина зависит от атомного номера поглощающего вещества и длины волны рентгеновского излучения.

Чаще пользуются массовым коэффициентом ослабления (поглощения)

где р - плотность (г/см 3), т. е. д имеет размерность см 2 /г. Введение массовых коэффициентов оказывается удобным, так как их характерной особенностью является независимость от агрегатного состояния вещества. Так, д имеет одинаковое значение для воды, водяного пара и льда. Кроме того, отпадает необходимость в определении коэффициентов ослабления для всего множества различных веществ. Это возможно потому, что поглощение и рассеяние осуществляются в основном внутренними электронами атомов, состояние которых не зависит от того, в состав какого вещества входит атом того или иного элемента. По этой причине в справочных таблицах обычно приводятся значения массовых коэффициентов ослабления ц для атомов различных элементов и для различных длин волн рентгеновских лучей. Например, массовый коэффициент поглощения алюминия в излучении SrК а (Л = 0, 876 А) обозначается как До,876 или /ЩгК а. Таблицы значений д для важнейших К а1 ~, Kg-, L a - и других линий излучения элементов опубликованы.