Менделя законы. Второй закон менделя 1 закон менделя название формулировка схема

I закон Менделя. Закон единообразия гибридов первого поколения

При скрещивании гомозиготных особей, отличающихся по одной паре альтернативных (взаимоисключающих) признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Скрещивали растения гороха с желтыми (доминантный признак) и зелеными (рецессивный признак) семенами. Образование гамет сопровождается мейозом. Каждое растение образует один сорт гамет. Из каждой гомологичной пары хромосом в гаметы отходят по одной хромосоме с одним из аллельных генов (А или а). После оплодотворения парность гомологичных хромосом восстанавливается, образуются гибриды. Все растения будут иметь семена только желтого цвета (фенотип), гетерозиготны по генотипу Аа. Это происходит при полном доминировании.

Гибрид Аа имеет один ген А от одного родителя, а второй ген - а - от другого родителя (рис. 73).

Гаплоидные гаметы (G), в отличие от диплоидных организмов, обводят кружочком.

В результате скрещивания получаются гибриды первого поколения, обозначаемые F 1 .

Для записи скрещиваний применяют специальную таблицу, предложенную английским генетиком Пеннетом и называемую решеткой Пеннета.

По горизонтали выписывают гаметы отцовской особи, по вертикали - материнской. В местах пересечений записывают геноти-

Рис. 73. Наследование при моногибридном скрещивании.

I - скрещивание двух сортов гороха с желтыми и зелеными семенами (Р); II

Цитологические основы I и II законов Менделя.

F 1 - гетерозиготы (Аа), F 2 - расщепление по генотипу 1 АА: 2 Аа: 1 аа.

пы потомков. В таблице число клеток зависит от числа типов гамет, образуемых скрещиваемыми особями.

II закон Менделя. Закон расщепления гибридов первого поколения

При скрещивании гибридов первого поколения между собой во втором поколении появляются особи как с доминантными, так и с рецессивными признаками и происходит расщепление по фенотипу в соотношении 3:1 (три доминантных фенотипа и один рецессивный) и 1:2:1 по генотипу (см. рис. 73). Такое расщепление возможно при полном доминировании.

Гипотеза «чистоты» гамет

Закон расщепления можно объяснить гипотезой «чистоты» гамет.

Явление несмешивания аллелей альтернативных признаков в гаметах гетерозиготного организма (гибрида) Мендель назвал ги- потезой «чистоты» гамет. За каждый признак отвечают два аллельных гена (Аа). При образовании гибридов аллельные гены не смешиваются, а остаются в неизмененном виде.

Гибриды Аа в результате мейоза образуют два типа гамет. В каждую гамету идет одна из пары гомологичных хромосом с ал- лельным геном А или аллельным геном а. Гаметы чисты от другого аллельного гена. При оплодотворении восстанавливается гомологичность хромосом и аллельность генов, проявляется рецессивный признак (зеленый цвет горошин), ген которого в гибридном организме не проявлял своего действия. Признаки развиваются в результате взаимодействия генов.

Неполное доминирование

При неполном доминировании гетерозиготные особи имеют собственный фенотип, и признак носит промежуточный характер.

При скрещивании растений ночной красавицы с красными и белыми цветками в первом поколении появляются особи с розовой окраской. При скрещивании гибридов первого поколения (розовые цветки) расщепление в потомстве по генотипу и фенотипу совпадает (рис. 74).


Рис. 74. Наследование при неполном доминировании у растения ночной красавицы.

Свойством неполного доминирования обладает ген, вызывающий серповидноклеточную анемию у человека.

Анализирующее скрещивание

Рецессивный признак (зеленый горох) проявляется только в гомозиготном состоянии. Гомозиготные (желтый горох) и гетерозиготные (желтый горох) особи с доминантными признаками по фенотипу не отличаются друг от друга, но имеют разные генотипы. Их генотипы можно установить, скрестив с особями с известным генотипом. Такой особью может быть зеленый горох, имеющий гомозиготный рецессивный признак. Это скрещивание называют анализирующимися. Если в результате скрещивания все потомство будет единообразным, то исследуемая особь гомозиготна.

Если произойдет расщепление, то особь гетерозиготна. Потомство гетерозиготной особи дает расщепление в соотноше- нии 1:1.

III закон Менделя. Закон независимого комбинирования признаков (рис. 75). Организмы отличаются друг от друга по нескольким признакам.

Скрещивание особей, отличающихся по двум признакам, называют дигибридным, а по многим - полигибридным.

При скрещивании гомозиготных особей, отличающихся по двум парам альтернативных признаков, во втором поколении происходит независимое комбинирование признаков.

В результате дигибридного скрещивания все первое поколение единообразно. Во втором поколении происходит расщепление по фенотипу в соотношении 9:3:3:1.

Например, если скрестить горох с желтыми семенами и гладкой поверхностью (доминантный признак) с горохом с зелеными семенами и морщинистой поверхностью (рецессивный признак), то все первое поколение будет единообразным (желтые и гладкие семена).

При скрещивании гибридов между собой во втором поколении появились особи с признаками, которых не было у исходных форм (желтые морщинистые и зеленые гладкие семена). Эти признаки наследуются независимо друг от друга.

Дигетерозиготная особь образовывала 4 типа гамет

Для удобства подсчета особей, получившихся во втором поколении после скрещивания гибридов, пользуются решеткой Пеннета.

Рис. 75. Независимое распределение признаков при дигибридном скрещивании. А, В, а, b - доминантные и рецессивные аллели, контролирующие развитие двух признаков. G - половые клетки родителей; F 1 - гибриды первого поколения; F 2 - гибриды второго поколения.

В результате мейоза в каждую гамету отойдет по одному из аллельных генов из гомологичной пары хромосом.

Образуется 4 типа гамет. Расщепление после скрещивания в соотношении 9:3:3:1 (9 особей с двумя доминантными признаками, 1 особь с двумя рецессивными признаками, 3 особи с одним доминантным, а другим рецессивным признаками, 3 особи с доминантным и рецессивным признаками).

Появление особей с доминантными и рецессивными признаками возможно потому, что гены, отвечающие за цвет и форму горошин, находятся в различных негомологичных хромосомах.

Каждая пара аллельных генов распределяется независимо от другой пары, и поэтому гены могут комбинироваться независимо.

Гетерозиготная особь по «n» парам признаков образует 2 n типов гамет.

Вопросы для самоконтроля

1. Как формулируется I закон Менделя?

2. Горох с какими семенами скрещивал Мендель?

3. Растения с какими семенами получились в результате скрещивания?

4. Как формулируется II закон Менделя?

5. Растения с какими признаками получились в результате скрещивания гибридов первого поколения?

6. В каком числовом соотношении происходит расщепление?

7. Как можно объяснить закон расщепления?

8. Как объяснить гипотезу «чистоты» гамет?

9. Как объяснить неполное доминирование признаков? 10.Какое расщепление по фенотипу и генотипу происходит

после скрещивания гибридов первого поколения?

11.Когда производят анализирующее скрещивание?

12. Как производят анализирующее скрещивание?

13.Какое скрещивание называют дигибридным?

14. В каких хромосомах находятся гены, отвечающие за цвет и форму горошин?

15. Как формулируется III закон Менделя?

16. Какое расщепление по фенотипу происходит в первом поколении?

17. Какое расщепление происходит по фенотипу во втором поколении?

18.Что используют для удобства подсчета особей, получившихся после скрещивания гибридов?

19.Как можно объяснить появление особей с признаками, которых не было раньше?

Ключевые слова темы «Законы Менделя»

аллельность анемия

взаимодействие

гаметы

ген

генотип

гетерозигота

гибрид

гипотеза «чистоты» гамет

гомозигота

гомологичность

горох

горошина

действие

дигибрид

доминирование

единообразие

закон

мейоз

образование окраска

оплодотворение

особь

парность

поверхность

подсчет

поколение

полигибрид

потомство

появление

признак

растение

расщепление

решетка Пеннета

родители

свойство

семена

скрещивание

слияние

соотношение

сорт

удобство

фенотип

форма

характер

цвет

цветы

Множественный аллелизм

К числу аллельных генов могут относиться не два, а большее число генов. Это множественные аллели. Они возникают вслед- ствие мутации (замены или утраты нуклеотида в молекуле ДНК). Примером множественных аллелей могут быть гены, отвечающие за группы крови у человека: I A , I B , I 0 . Гены I A и I B доминантны по отношению к гену I 0 . В генотипе всегда присутствуют только два гена из серии аллелей. Гены I 0 I 0 определяют I группу крови, гены I A I A , I A I O - II группу, I B I B , I B I 0 - III группу, I A I B - IV группу.

Взаимодействие генов

Между геном и признаком существует сложная связь. Один ген может отвечать за развитие одного признака.

Гены отвечают за синтез белков, которые катализируют определенные биохимические реакции, в результате чего проявляются определенные признаки.

Один ген может отвечать за развитие нескольких признаков, проявляя плейотропное действие. Выраженность плейотропного действия гена зависит от биохимической реакции, которую ката- лизирует фермент, синтезируемый под контролем данного гена.

За развитие одного признака могут отвечать несколько генов - это полимерное действие гена.

Проявление признаков - результат взаимодействия различных биохимических реакций. Эти взаимодействия могут быть связаны с аллельными и неаллельными генами.

Взаимодействие аллельных генов.

Взаимодействие генов, находящихся в одной аллельной паре, происходит по типу:

. полного доминирования;

. неполного доминирования;

. кодоминирования;

. сверхдоминирования.

При полном доминировании действие одного (доминантного) гена полностью подавляет действие другого (рецессивного). При скрещивании в первом поколении проявляется доминантный признак (например желтый цвет горошин).

При неполном доминировании происходит ослабление действия доминантного аллеля в присутствии рецессивного. Гете- розиготные особи, полученные в результате скрещивания, имеют собственный генотип. Например, при скрещивании растений ночной красавицы с красными и белыми цветками появляются розовые.

При кодоминировании проявляется действие обоих генов при одновременном их присутствии. В результате проявляется новый признак.

Например, IV группа крови (I A I B) у человека формируется при взаимодействии генов I A и I B . По отдельности ген I A определяет II группу крови, а I B - III группу крови.

При сверхдоминировании у доминантного аллеля в гетерозиготном состоянии отмечается более сильное проявление признака, чем в гомозиготном.

Взаимодействие неаллельных генов

На один признак организма очень часто могут влиять несколько пар неаллельных генов.

Взаимодействие неаллельных генов происходит по типу:

. комплементарности;

. эпистаза;

. полимерии.

Комплементарное действие проявляется при одновременном присутствии в генотипе организмов двух доминантных неаллельных генов. Каждый из доминантных генов может проявляться самостоятельно, если другой находится в рецессивном состоянии, но их совместное присутствие в доминантном состоянии в зиготе обусловливает новое состояние признака.

Пример. Скрещивали два сорта душистого горошка с белыми цветками. Все гибриды первого поколения имели красные цветки. Окрас- ка цветков зависит от двух взаимодействующих генов А и В.

Белки (ферменты), синтезированные на основе генов А и В, катализируют биохимические реакции, которые приводят к прояв- лению признака (красная окраска цветков).

Эпистаз - взаимодействие, при котором один из доминантных или рецессивных неаллельных генов подавляет действие другого неаллельного гена. Ген, подавляющий действие другого, называют эпистатическим геном, или супрессором. Подавляемый ген называют гипостатическим. Эпистаз бывает доминантным и рецессивным.

Доминантный эпистаз. Примером доминантного эпистаза может быть наследование окраски оперения у кур. Доминантный ген С отвечает за окраску оперения. Доминантный неаллельный ген I подавляет развитие окраски оперения. В результате этого куры, имеющие ген С в генотипе, в присутствии гена I имеют белое оперение: IICC; IiCC; IiCc; Iicc. Куры с генотипом iicc также будут белыми, потому что эти гены находятся в рецессивном состоянии. Оперение кур с генотипом iiCC, iiCc будет окрашено. Белая окраска оперения обусловлена присутствием рецессивного аллеля гена i или наличием гена подавителя окраски I. В основе взаимодействия генов лежат биохимические связи между белками-ферментами, которые кодируются эпистатическими генами.

Рецессивный эпистаз. Рецессивным эпистазом объясняется бомбейский феномен - необычное наследование антигенов системы групп крови АВ0. Известны 4 группы крови.

В семье женщины с I группой крови (I 0 I 0) от мужчины со II группой крови (I A I A) родился ребенок с IV группой крови (I A I B), что невозможно. Оказалось, что женщина унаследовала от матери ген I B , от отца ген I 0 . Проявил действие только ген I 0 , поэтому

считалось, что женщина имеет I группу крови. Ген I B был подавлен рецессивным геном х, который находился в гомозиготном состоянии - хх.

У ребенка этой женщины подавленный ген I B проявил свое действие. Ребенок имел IV группу крови I A I B .

Полимерное действие генов связано с тем, что несколько неал- лельных генов могут отвечать за один и тот же признак, усиливая его проявление. Признаки, зависящие от полимерных генов, относят к количественным. Гены, отвечающие за развитие количественных признаков, дают суммарный эффект. Например, за пигментацию кожи у человека отвечают полимерные неаллельные гены S 1 и S 2 . В присутствии доминантных аллелей этих генов синтезируется много пигмента, в присутствии рецессивных - мало. Интенсивность окраски кожи зависит от количества пигмента, что определяется количеством доминантных генов.

От брака между мулатами S 1 s 1 S 2 s 2 рождаются дети с пигментацией кожи от светлой до темной, но вероятность рождения ребенка с белым и черным цветом кожи равна 1/16.

Многие признаки наследуются по принципу полимерии.

Вопросы для самоконтроля

1. Что такое множественные аллели?

2. Какие гены отвечают за группы крови у человека?

3. Какие группы крови есть у человека?

4. Какие связи существуют между геном и признаком?

5. Как взаимодействуют аллельные гены?

6. Как взаимодействуют неаллельные гены?

7. Как можно объяснить комплементарное действие гена?

8. Как можно объяснить эпистаз?

9. Как можно объяснить полимерное действие гена?

Ключевые слова темы «Множественные аллели и взаимодействие генов»

аллелизм аллель антигены брак

взаимодействие

генотип

гибрид

горох

горошек

группа крови

действие

дети

доминирование

женщина

замена

кодоминантность

кодоминирование

кожа

куры

мать

молекула

мулат

мутация

наличие

наследование

нуклеотиды

окраска

оперение

основа

отношение

пигмент

пигментация

плейотропия

подавитель

поколение

полимерия

признак

пример

присутствие

проявление

развитие

реакции

ребенок

результат

сверхдоминирование связь

синтез белка система

скрещивание

состояние

степень

утрата

феномен

ферменты

цвет

цветы

человек

Формулировка 1 закона Менделя Закон единообразия первого поколения гибридов, или первый закон Менделя. При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей




Формулировка 2 закона Менделя Закон расщепления, или второй закон Менделя Менделя При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.






Формулировка 3 закона Менделя Закон независимого наследования (третий закон Менделя) При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).(Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1)


Р АА ВВ аа bb х жёлтые, гладкие семеназелёные, морщинистые семена G (гаметы) АВаbаb F1F1 Аа Bb жёлтые, гладкие семена 100% 3 закон Менделя ДИГИБРИДНОЕ СКРЕЩИВАНИЕ. Для опытов в качестве материнского растения был взят горох с гладкими желтыми семенами, а в качестве отцовского – с зелеными морщинистыми семенами. У первого растения оба признака являлись доминантными (АВ), а у второго – оба рецессивными (аb



Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. (желтые и гладкие горошины) Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1. 9/16 желтыми гладкими горошинами, 3/16 с желтыми морщинистыми горошинами, 3/16 с зелёными гладкими горошинами, 1/16 с зелёными морщинистыми горошинами.


Задача 1.У спаниелей чёрный цвет шерсти доминирует над кофейным, а короткая шерсть – над длинной. Охотник купил собаку чёрного цвета с короткой шерстью и, чтобы быть уверенным, что она чистопородна, провёл анализирующее скрещивание. Родилось 4 щенка: 2 короткошерстных чёрного цвета, 2 короткошерстных кофейного цвета. Каков генотип купленной охотником собаки? Задачи на дигибридное скрещивание.


Задача 2. У томата красная окраска плода доминирует над желтой окраской, а высокий стебель - над низким стеблем. От скрещивания сорта с красными плодами и высоким стеблем и сорта с желтыми плодами и низким стеблем получили 28 гибридов во втором поколении. Гибриды первого поколения скрещивались между собой, получили 160 растений- гибридов второго поколения. Сколько типов гамет образует растение первого поколения? Сколько растений в первом поколении имеют красную окраску плода и высокий стебель? Сколько разных генотипов среди растений второго поколения с красной окраской плода и высоким стеблем? Сколько растений во втором поколении имеют желтую окраску плода и высокий стебель? Сколько растений во втором поколении имеют желтую окраску плода и низкий стебель?


Задача 3 У человека карий цвет глаз доминирует над голубым цветом, а способность владеть левой рукой рецессивна по отношению к праворукости. От брака голубоглазого мужчины-правши с кареглазой женщиной-левшой родился голубоглазый ребенок-левша. Сколько типов гамет образуется у матери? Сколько типов гамет образуется у отца? Сколько может быть разных генотипов среди детей? Сколько может быть разных фенотипов среди детей? Какова вероятность рождения в этой семье голубоглазого ребенка-левши (%)?


Задача 4 Хохлатость у кур доминирует над отсутствием хохла, а черная окраска оперения - над бурой. От скрещивания гетерозиготной черной курицы без хохла с гетерозиготным бурым хохлатым петухом получено 48 цыплят. Сколько типов гамет образуется у курицы? Сколько типов гамет образуется у петуха? Сколько разных генотипов будет среди цыплят? Сколько будет хохлатых черных цыплят? Сколько будет черных цыплят без хохла?


Задача 5 У кошек короткая шерсть сиамской породы доминирует над длинной шерстью персидской породы, а черная окраска шерсти персидской породы доминантна по отношению к палевой окраске сиамской. Скрещивались сиамские кошки с персидскими. При скрещивании гибридов между собой во втором поколении получено 24 котенка. Сколько типов гамет образуется у кошки сиамской породы? Сколько разных генотипов получилось во втором поколении? Сколько разных фенотипов получилось во втором поколении? Сколько котят во втором поколении похожи на сиамских кошек? Сколько котят во втором поколении похожи на персидских?


Решение задач на дом Вариант 1 1) Голубоглазый правша женился на кареглазой правше. У них родилось двое детей – кареглазый левша и голубоглазый правша. От второго брака этого мужчины с другой кареглазой правшой родилось 8 кареглазых детей, все правши. Каковы генотипы всех трёх родителей. 2) У человека ген лопоухости доминирует над геном нормальных прижатых ушей, а ген нерыжих волос над геном рыжих. Какого потомства можно ожидать от брака лопоухого рыжего, гетерозиготного по первому признаку мужчины с гетерозиготной нерыжей с нормальными прижатыми ушами женщиной. Вариант 2 1)У человека косолапость (Р) доминирует над нормальным строением стопы (Р) а нормальный обмен углеводов (О) над сахарным диабетом. Женщина, имеющая нормальное строение стопы и нормальный обмен веществ, вышла замуж за косолапого мужчину. От этого брака родилось двое детей, у одного из которых развилась косолапость, а у другого сахарный диабет. Определить генотип родителей по фенотипу их детей. Какие фенотипы и генотипы детей возможны в этой семье? 2) У человека ген карих глаз доминирует над геном голубых глаз, а умение владеть правой рукой над леворукостью. Обе пары генов расположены в разных хромосомах. Какими могут быть дети, если: отец левша, но гетерозиготен по цвету глаз, а мать голубоглаза, но гетерозиготна в отношении умения владеть руками.


Решим задачи 1. У человека нормальный обмен углеводов доминирует над рецессивным геном, ответственным за развитие сахарного диабета. Дочь здоровых родителей больна. Определите, может ли в этой семье родиться здоровый ребенок и какова вероятность этого события? 2. У людей карий цвет глаз доминирует над голубым. Способность лучше владеть правой рукой доминирует над леворукостью, гены обоих признаков находятся в разных хромосомах. Кареглазый правша женится на голубоглазой левше. Какое потомство следует ожидать в этой паре?

В 50-60-х годах XIX века австрийский биолог и монах Грегор Мендель проводил опыты по скрещиванию гороха. В результате статистической обработки данных Мендель не только установил, но и смог объяснить ряд генетических закономерностей. Это при том, что в то время ничего не знали о ДНК и генах как носителях наследственной информации. Грегора Менделя считают отцом генетики.

Еще до Менделя ряд ученых в начале XIX века отмечали, что у гибридов некоторых растений проявляется признак только одного родителя. Но только Мендель догадался исследовать статистические соотношения гибридов в ряду нескольких поколений. Кроме того ему повезло с выбором объекта для экспериментов - гороха посевного. Мендель изучал семь признаков этого растения, и почти все они наследовались, как находящиеся в разных хромосомах и наблюдалось полное доминирование. Если бы нашлись сцепленные признаки, а также наследуемые по типу неполного доминирования или кодоминирования и др., то это бы внесло путаницу в исследования ученого.

Установленные Менделем закономерности наследования сейчас называют первым, вторым и третьим законами Менделя. Первый закон Менделя - это закон единообразия гибридов первого поколения.

Мендель проводил моногибридное скрещивание. Он брал чистые линии, различающиеся только по одной альтернативной паре признаков. Например, растения с желтыми и зелеными семенами (или гладкими и морщинистыми, или высоким и низким стеблем, или пазушными и верхушечными цветками и др.) Проводил перекрестное опыление чистых линий и получал гибриды первого поколения. (Обозначение поколений F 1 , F 2 ввели в начале XX века.) У всех гибридов F 1 наблюдался признак только одного из родителей. Этот признак Мендель назвал доминантным. Другими словами, все гибриды первого поколения были единообразны.

Второй, рецессивный, признак в первом поколении исчезал. Однако он проявлялся во втором поколении. И это требовало какого-то объяснения.

Опираясь на результаты двух скрещиваний (F 1 и F 2), Мендель понял, что за каждый признак у растений отвечают два фактора. У чистых линий они были также парны, но одинаковы по своей сути. Гибриды первого поколения получали по одному фактору от каждого из родителей. Эти факторы не сливались, а сохраняли обособленность друг от друга, но проявится мог только один (который оказывался доминантным).

Первый закон Менделя не всегда формулируют как закон единообразия гибридов первого поколения. Встречается и подобная формулировка: п ризнаки организма определяются парами факторов, а в гаметах по одному фактору на каждый признак . (Эти «факторы» Менделя в настоящее время называют генами.) Действительно, важный вывод, который можно было сделать из опытов Менделя - это то, что организмы содержат по два носителя информации о каждом признаки, передают через гаметы потомкам по одному фактору, и в организме факторы, обуславливавшие один и тот же признак, не смешиваются между собой.

Более глубокое генетическое, а также цитологическое и молекулярное объяснение законы Менделя получили позднее. Были выявлены исключения из законов, которые также были объяснены.

Чистые линии - это гомозиготы. У них исследуемая пара аллелей одинакова (например, AA или aa). Выступая в качестве родителя (P) одно растение образует гаметы, содержащие только ген A, а другое - только ген a. Получившиеся от их скрещивания гибриды первого поколения (F 1) являются гетерозиготами, так как имеют генотип Aa, который при полном доминировании фенотипически проявляется также как гомозиготный генотип AA. Именно эту закономерность описывает первый закон Менделя.

На схеме ниже w - ген, отвечающий за белый цвет цветка, R - за красный (данный признак доминантный). Черными линиями обозначены разные варианты встречи гамет. Все они равновероятны. (Такая «прорисовка» встречи гамет будет важна при объяснении второго закона Менделя.) В любом случае (при любой встрече родительских гамет) у гибридов первого поколения формируются одинаковые генотипы - Rw.

План урока №18

1 Образовательная:

2 Развивающая:

Ход урока:

I Организационный момент

II Основная часть

1 Проверка домашнего задания

.

Что такое генотип, фенотип?

,?

2 Объяснение нового материала

Г) Что такое чистота гамет?

III Подведение итогов урока

IV Домашнее задание

1 Записи в тетради

Занятие №18

Тема:

МОНОГИБРИДНОЕ СКРЕЩИВАНИЕ

гибридизацией, гибридным, а отдельную особь - гибридом.

доминированием.

В потомстве, полученном от скрещивания гибридов первого поколения наблюдается явление расщепления: четверть особей из гибридов второго поколения несет рецессивный признак, три четверти – доминантный.

При скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1

(25% - гомозиготных доминантных, 50% - гетерозиготных, 25% - гомозиготных рецессивных)

Закон чистоты гамет

В чем причина расщепления? Почему в первом, втором и последующих поколениях возникают особи, дающие в результате скрещивания потомство с доминантным и рецессивным признаками?

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет».

Связь между поколениями при половом размножении осуществляется через половые клетки (гаметы). Очевидно, гаметы несут материальные наследственные факторы – гены, которые определяют развитие того или иного признака.

Обратимся к схеме, на которой символами записаны результаты:

Ген, отвечающий за доминантный желтый цвет семян, обозначим большой буквой, например А ; ген, отвечающий за рецессивный зеленый цвет, - малой буквой а . Обозначим соединение гамет, несущих гены А и а, знаком умножения: А х а =Аа. Как видно, возникающая в результате гетерозиготная форма (F1) имеет оба гена – Аа. Гипотеза чистоты гамет утверждает, что у гибридной (гетерозиготной) особи половые клетки чисты, т.е.имеют по одному гену из данной пары. Это означает, что у гибрида Аа будут в равном числе возникать гаметы с геном А и с геном а. Какие же между ними возможны сочетания? Очевидно, равновероятны четыре комбинации:

♂ ♀ А а
А АА Аа
а аА аа

В результате 4-х комбинаций получатся сочетания АА, 2Аа и аа. Первые три – дадут особей с доминантным признаком, четвертое – с рецессивным. Гипотеза чистоты гамет объясняет причину расщепления и наблюдаемые при этом численные соотношения. Вместе с тем ясны и причины различия в отношении дальнейшего расщепления особей с доминантными признаками в последующих поколениях гибридов. Особи с доминантными признаками по своей наследственной природе неоднородны. Одна из трех (АА) будет давать гаметы только одного сорта (А) а при самоопылении или скрещивании с себе подобными не будет расщепляться. Две другие (Аа) дадут гаметы 2-х сортов, в их потомстве будет происходить расщепление в тех же численных соотношениях, что и у гибридов второго поколения.Гипотеза чистоты гамет устанавливает, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены (Аа). Соединится ли гамета, несущая А ген, с другой гаметой, несущей А или а ген, при условии равной жизнеспособности гамет и равного их количества, одинаково вероятно.

При случайном характере соединения гамет общий результат оказывается статистически закономерным.

Таким образом, было установлено, что расщепление признаков в потомстве гибридных растений – результат наличия у них двух генов – А и а, ответственных за развитие одного признака, например окраски семян.

Мендель предложил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде. В теле гибрида F1 от скрещивания родителей, различающих по альтернативным признакам, присутствуют оба фактора - доминантный ген и рецессивный, но рецессивный ген подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки - гаметы. Следовательно, необходимо допустить, что каждая гамета несёт только один фактор из пары. Тогда при оплодотворении - слияний двух гамет, каждая из которых несёт рецессивный ген, приводит к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, несущих по доминантному гену, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный ген, будет приводить к развитию организма с доминантным признаком.

Таким образом, появление во втором поколении (F 2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде, 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление признаков впотомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, т.е. несут только один ген из аллельной пары.

Закон частоты гамет можно сформулировать следующим образом:при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

Почему и как это происходит? Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых аллельных гена. Образуются два сорта гамет по данной аллельной паре. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25% генотипов будут гомозиготными доминантными, 50% - гетерозиготными, 25% - гомозиготными рецессивными, т.е. устанавливается отношение: 1АА:2Аа:1аа. Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношение 3 / 4 особей с доминантным признаком, / 4 особей с рецессивным признаком (3:1).

Таким образом, цитологической основой расщепления признаков у потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.

Анализирующее скрещивание

Разработанный Менделем гибридологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен организм, имеющий доминантный фенотип по исследуемому гену (или исследуемым генам). Для этого скрещивают особь с неизвестным генотипом и организм, гомозиготный по рецессивной аллеи (аллеям), имеющий рецессивный фенотип.

Если доминантная особь гомозиготна, то потомство от такого скрещивания будет единообразным и расщепления не произойдет (ААхаа = Аа). Если доминантная особь гетерозиготна, то расщепление произойдет в отношении 1:1 по фенотипу (Аа х аа = Аа, аа). Такой результат скрещивания -прямое доказательство образования у одного из родителей двух сортов гамет, т.е. его гетерозиготности.

При дигибридном скрещивании расщепление по каждому признаку идет независимо от другого признака. Дигибридное скрещивание есть два независимо идущих моногибридных скрещивания, результаты которых как бы накладываются друг на друга

При скрещивании двух гомозиготных особей, отличающихся др. от др. по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

На законах Менделя основан анализ расщепления и в более сложных случаях – при различиях особей по трем, четырем и более парам признаков.

План урока №18

ТЕМА: Моногибридное и дигибридное скрещивание. Законы Менделя

1 Образовательная:

Сформировать знания о моногибридном скрещивании, первом законе Менделя

Показать роль исследований Менделя в понимании сущности наследования признаков

Раскрыть формулировку закона расщепления, второго закона Менделя

Раскрыть сущность гипотезы чистоты гамет

Сформировать знания о дигибридном скрещивании как методе изучения наследственности

Раскрыть на примере ди- и полигибридного скрещивания проявление третьего закона Менделя

2 Развивающая:

Развивать память, расширять кругозор

Способствовать развитию навыка использования генетической символики при решении генетических задач

Ход урока:

I Организационный момент

1 Ознакомление студентов с темой и целью урока

2 Перед студентами ставится ряд заданий, которые необходимо выполнить в процессе урока:

Знать формулировки законов Менделя

Усвоить закономерности наследования признаков, установленные Менделем

Усвоить сущность гипотезы чистоты гамет

Усвоить сущность дигибридного скрещивания

II Основная часть

1 Проверка домашнего задания

Что изучает генетика? Какие задачи решает генетика?

Дайте определение наследственности и изменчивости.

Назовите этапы эмбрионального периода?

Объясните термины: ген, доминантные и рецессивные гены. - Какое развитие называют прямым?

Какие гены называют аллельными? Что такое множественный аллелизм?

Что такое генотип, фенотип?

В чем особенность гибридологического метода?

Что означает генетическая символика: Р,F1,F2,,?

2 Объяснение нового материала

Моногибридное скрещивание; первый закон Менделя

Второй закон Менделя; закон частоты гамет

Сущность дигибридного скрещивания; третий закон Менделя

3 Закрепление нового материала

А) Сформулируйте 1 закон Менделя.

Б) Какое скрещивание называют моногибридным?

В) Сформулируйте второй закон Менделя

Г) Что такое чистота гамет?

Д) Какие правила и закономерности проявляются при дигибридном скрещивании?

Е) Как формулируется третий закон Менделя?

III Подведение итогов урока

IV Домашнее задание

1 Записи в тетради

2 Учебник В.Б.Захарова, С.Т.Мамонтова «Биология» (стр.266-277)

3 Учебник Ю.И.Полянского «Общая биология» (стр. 210-217)

Занятие №18

Тема:«Моногибридное и дигибридное скрещивание. Законы Менделя».

1. Моногибридное скрещивание. Правило единообразия гибридов первого поколения – первый закон наследственности, установленный Г.Менделем.

2. Второй закон Менделя - закон расщепления. Гипотеза чистоты гамет

3. Дигибридное и полигибридное скрещивание. Третий закон Менделя – закон независимого комбинирования признаков.

МОНОГИБРИДНОЕ СКРЕЩИВАНИЕ

Для иллюстрации первого закона Менделя вспомним его опыты по моногибридному скрещиванию растений гороха. Скрещивание двух орга­низмов называется гибридизацией, потомство от скре­щивания двух особей с разной наследственностью назы­вают гибридным, а отдельную особь - гибридом.

Моно­гибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтерна­тивных (взаимоисключающих) признаков.

Например, при скрещивании гороха с желтыми (доминирующий признак) и зелены­ми семенами (рецессивный признак), все гибриды будут иметь желтые семена. Такая же картина наблюдается при скрещивании растений, обладающих гладкой и морщинистой формой семян; все потомство первого поколения будет иметь гладкую форму семян. Следовательно, у гибрида, первого поко­ления из каждой пары альтернативных признаков проявляется только один. Второй признак как бы исчезает, не проявляется. Преобладание у гибрида признака одного из родителей Мендель назвал доминированием. По фенотипу все гибриды имеют желтые семена, а по генотипу они гетерозиготные (Аа). Т.о., все поколение единообразно.

Первый закон Менделя - закон доминирования.

Закон единообразия первого поколения гибридов, или первый закон Менделя - называют также законом доминирования, так как все особи первого поколения имеют одинаковое проявление признака. Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся др. от др. по одной паре альтернативных признаков, все первое поколение гибридов(F 1) окажется единообразным и будет нести признак одного из родителей.

Такая закономерность будет наблюдаться во всех случаях при скрещивании двух организмов, принадлежащих двум чистым линиям, когда имеет место явления полного доминирования признака (т.е. один признак полностью подавляет развитие другого).

Скрещивание:

1. Моногибридное. Наблюдение ведется только по одному признаку, т.е. отслеживаются аллели одного гена.
2. Дигибридное. Наблюдение ведется по двум признакам, те.е отслеживаются аллели двух генов.

Генетические обозначения:

Р – родители; F – потомство, число указывает на порядковый номер поколения, F1, F2.

Х – значок скрещивания, мужские особи, женские особи; А, а, В, в, С, с – отдельно взятые наследственные признаки. А, В, С – доминантные аллели гена, а, в, с – рецессивные аллели гена. Аа – , гетерозигота; аа – рецессивная гомозигота, АА – доминантная гомозигота.

Моногибридное скрещивание.

Классическим примером моногибридного скрещивания является скрещивание сортов с желтыми и зелеными семенами: все потомки имели желтые семена. Мендель пришел к выводу, что у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один – доминантный, а второй – рецессивный – не развивается, как бы исчезает.

Р АА * аа – родители (чистые линии)

А, а – родителей

Аа – первое поколение гибридов

Эта закономерность была названа законом единообразия гибридов первого поколения или законом доминирования. Это первый закон Менделя: при скрещивании двух организмов, относящихся к разным чистым линиям (двух организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Второй закон Менделя

Семена гибридов первого поколения использовались Менделем для получения вроторого поколения. При скрещивании происходит расщепление признаков в определенном числовом отношении. Часть гибридов несет доминантный признак, часть – рецессивный.

F1 Аа * Аа А, а, А, а F2 АА (0,25); Аа (0,25); Аа (0,25); аа (0,25)

В потомстве происходит расщепление признаков в соотношении 3:1.

Для объяснения явлений доминирования и расщепления Мендель предложил ипотезу чистоты гамет: наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде.

Второй закон Менделя
можно сформулировать: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по – 1:2:1.

Третий закон Менделя
: при дигибридном скрещивании у гибридов второго поколения каждая пара контрастных признаков наследуется независимо от других и дает с ними разные сочетания. Закон справедлив лишь в тех случаях, когда анализируемые признаки не сцеплены друг с другом, т.е. находятся в негомологичных хромосомах.

Рассмотрим опыт Менделя, в котором он изучал независимое наследование признаков у гороха. Одно из скрещиваемых растений имело гладкие, желтые семена, а другое морщинистые и зеленые. В первом поколении гибридов растения имели гладкие и желтые семена. Во втором поколении произошло расщепление по фенотипу 9:3:3:1.

Третий закон Менделя формулируется так: расщепление по каждой паре генов идет независимо от других пар генов.